Preparation, Characterization, and Intercalation of $(PbS)(TS_2)_2$; (T = Ti, Nb, Ta), New Ternary Sulfides with Layered Composite Crystal Structure

Yoshito GOTOH, Junji AKIMOTO, Makoto SAKURAI, Yoshimichi KIYOZUMI,

Kunio SUZUKI, and Yoshinao OOSAWA

National Chemical Laboratory for Industry, Tsukuba, Ibaraki 305

A few $(PbS)(TS_2)_2$; (T = Ti, Nb, Ta) type of ternary sulfides has been prepared. On the basis of powder X-ray diffraction, it is suggested that they have layered composite crystal structure in which a two-atom-thick PbS layer and two adjacent three-atom-thick TS_2 sandwiches are stacked alternately. Intercalation of hydrazine into the sulfides has been observed.

Recently many ternary sulfides with layered composite crystal structure have been reported: $(MS)_nTS_2(M=Lanthanides, Pb, Sn, Bi; T=Ti, V, Nb, Ta, Cr; n=1.08-1.19).^{1,2}$ In these compounds, two-atom-thick MS layer with distorted NaCl structure and three-atom-thick TS_2 sandwich with T in octahedral or trigonal prismatic coordination are stacked alternately. It is known that the binary sulfide(MS or TS_2) which constitutes $(MS)_nTS_2$ is superconductor, host compounds for intercalation, semiconductor sensor for near-infrared light, and so on. Therefore these ternary sulfides are interesting from the standpoint of not only structure, but also physical properties and functions.

In addition to the $(MS)_nTS_2$ type of sulfides, sulfides with MT_2S_5 formula have been reported. They are $PbNb_2S_5$, $SnTi_2S_5$, $^3)$ and BiT_2S_5 (T =

Ti, Nb, Ta). We have found that $\operatorname{BiT}_2S_5(T=Ti, \operatorname{Nb}, \operatorname{Ta})$ seems to have layered composite crystal structure similar to that of $(\operatorname{MS})_n\operatorname{TS}_2$ type of sulfides and consist of a two-atom-thick MS layer and two adjacent three-atom-thick TS_2 sandwiches alternately stacked. Therefore it seems more adequate to represent the BiT_2S_5 type of sulfides as $(\operatorname{BiS})_n(\operatorname{TS}_2)_2$. We also have found that intercalation of hydrazine occurs in $(\operatorname{BiS})_n(\operatorname{TS}_2)_2$ which shows that the interface of two adjacent TS_2 sandwiches has the character of van der Waals plane like corresponding binary TS_2 . In the present manuscript, we preliminarily report preparation, and characterization of $(\operatorname{PbS})(\operatorname{TiS}_2)_2$ and $(\operatorname{PbS})(\operatorname{TaS}_2)_2$. Intercalation of hydrazine into $(\operatorname{PbS})(\operatorname{TS}_2)_2(T=\operatorname{Ti},\operatorname{Nb},\operatorname{Ta})$ is also reported.

These sulfides were prepared as follows. Starting materials(powder of Pb(purity 3N), Ti(3N), Nb(3N6), Ta(3N6), S(4N)) were mixed together in the ratio of Pb/T/S = 1/2/5 and sealed in a silica tube. The tube was heated at first at $500\,^{\circ}$ C and then at $800\,^{\circ}$ C. X-Ray powder diffraction was measured using counter-diffractometer method.

The X-ray diffraction patterns of $(PbS)(TiS_2)_2$ and $(PbS)(TaS_2)_2$ consist of several strong peaks and a few medium and weak peaks. The strong peaks are attributable to a set of parallel planes $(0\ 0\ \ell)$ as in the case of $(BiS)(TS_2)_2$. This fact suggest that the compounds have some layered structure and take preferred orientation. Because the X-ray diffraction lines other than $(0\ 0\ \ell)$ are rather weak and broad probably owing to the preferred orientation and stacking disorder, we here show only the $(0\ 0\ \ell)$ diffraction data in Table 1.

According to single crystal X-ray structure determination of $(PbS)_{1.12}VS_2$, 5,6) $(PbS)_{1.14}NbS_2$, 7) $(PbS)_{1.13}TaS_2$, 8) their structure in the layer-stacking direction consists of a two-atom-thick MS layer with distorted NaCl structure and a three-atom-thick TS_2 sandwich with T in octahedral or trigonal prismatic coordination, and the length of the structure in the layer-stacking direction is around 12 $\stackrel{\circ}{A}$.

On the other hand, the periodic length of the present (PbS)(TS $_2$) $_2$ type

Table 1.	X-Ray powder	diffraction	data of	(0 0 k) diffraction	lines	of
(PbS)(Ti	$S_2)_2$ and (PbS)(TaS ₂) ₂					

h	k	1	$d_{\texttt{calcd}}/\overset{\circ}{A}$	d _{obsd} /Å	(I/I _o) _{obsd}	d_{calcd}/A	d_{obsd}/A	(I/I _O)obsd
			(PbS)(TiS ₂)2	(PbS)(TaS ₂) 2
0	0	n	17.45	17.9	5			
0	0	2n	8.724	8.75	3	9.000	9.00	4
0	0	3n	5.816	5.817	23	5.999	6.022	100
0	0	4n	4.362	4.360	38	4.500	4.497	29
0	0	5n	3.489	3.481	58	3.600	3.601	27
0	0	6n	2.908	2.919	100			
0	0	7n	2.492	2.490	24	2.571	2.569	16
0	0	8n	2.181	2.182	16	2.250	2.251	5
0	0	9n	1.939	1.939	16	2.000	2.000	23
0	0	10n						
0	0	11n						
0	0	12n	1.4539	1.4525	35	1.4998	1.5001	20

of sulfides is in the range of 17.5-18.0 $\overset{\circ}{A}$. The length becomes larger with an increase in the atomic radius of the constituent T element. Table 2 represents the periodic lengths of $(PbS)_nTS_2$ and $(PbS)(TS_2)_2$ and their difference for given T. Each difference coincides well with the periodic length of the corresponding disulfides in the layer-stacking direction. Therefore these $(PbS)(TS_2)_2$ type of sulfides seem to be represented by a model depicted in Fig. 1: a two-atom-thick layer of PbS and two adjacent three-atom-thick sandwiches of TS_2 are stacked alternately as in the case of $(BiS)(TS_2)_2$.

It is expected that some electron-donating guest molecule or ions can intercalate into the interface between the two adjacent TS_2 layers as in the case of the $(BiS)(TS_2)_2$. In fact, the periodic length of $(PbS)(TS_2)_2$ in the layer-stacking direction became larger when the sulfide was soaked in hydrazine hydrate at room temperature. The length of enlargement is around 3 $\stackrel{\circ}{A}$ for every $(PbS)(TS_2)_2$. On the other hand, no intercalation occured when $(PbS)_nTS_2$ was soaked in hydrazine hydrate. This fact means that hydrazine does not intercalate into the interface between PbS and TS_2

layers. Therefore it is suggested that hydrazine(probably in the form of hydrazinium ion) is intercalated into the interface between the two adjacent ${\tt TS}_2$ layers.

Table 2. Periodic lengths($\overset{\circ}{\rm A}$) of (PbS) $_{\rm n}$ TS $_{\rm 2}$ and (PbS)(TS $_{\rm 2}$) $_{\rm 2}$, and their difference

Т	Ti	Nb	Та
(PbS) _n TS ₂	11.78 ^{a)}	11.90 ^{b)}	11.98 ^{c)}
$(PbS)(TS_2)_2^d$	17.45	17.86 ^{e)}	18.00
Difference	5.67	5.96	6.02
TS ₂	5.66 ^{f)}	5.97 ^{g)}	6.01 ^{f)}

РЬ S

Т S 2

РЬ S

Т S 2

Т S 2

- e) 17.92 A is obtained from Ref.3.
- f) JCPDS No.: TiS₂, 36-1406; TaS₂, 2-137
- g) D. R. Powell and R. A. Jacobson, J. Solid State Chem., $\underline{37}$, 140(1981).

Fig. 1. Schematic drawing of $(PbS)_n(TS_2)_2$.

References

- 1) G. A. Wiegers, A. Meetsma, R. J. Haange, and J. L. de Boer, Solid State Ionics, 32, 183(1989).
- 2) G. A. Wiegers et al., Solid State Commun., 70, 409(1989).
- 3) L. Guemas, P. Rabu, A. Meerschaut, and J. Rouxel, Mat. Res. Bull., 23, 1061(1988).
- 4) Y. Oosawa, Y. Gotoh, and M. Onoda., Chem. Lett., <u>1989</u>, 1563.
- 5) Y. Gotoh, M. Goto, K. Kawaguchi, Y. Oosawa, and M. Onoda, Mat. Res. Bull., <u>25</u>, 307(1990).
- 6) M. Onoda, K. Kato, Y. Gotoh, and Y. Oosawa, Acta Crystallogr., Sect. B, 46, 487(1990).
- 7) G. A. Wiegers, A. Meetsma, R. J. Haange, S. van Smaalen, and J. L. de Boer, Acta Crystallogr., Sect. B, <u>46</u>, 324(1990).
- 8) J. Wulff, A. Meetsma, S. van Smaalen, R. J. Haange, J. L. de Boer, and G. A. Wiegers, J. Solid State Chem., <u>84</u>, 118(1990).

(Received August 16, 1990)

a) Our data obtained with powder sample.

b) Ref. 7.

c) Ref. 8.

d) Value calculated from (0 0 n) diffraction line in Table 1.